Numerical integration of positive linear differential-algebraic systems

نویسندگان

  • Ann-Kristin Baum
  • Volker Mehrmann
چکیده

In the simulation of dynamical processes in economy, social sciences, biology or chemistry, the analyzed values often represent nonnegative quantities like the amount of goods or individuals or the density of a chemical or biological species. Such systems are typically described by positive ordinary differential equations (ODEs) that have a non-negative solution for every non-negative initial value. Besides positivity, these processes often are subject to algebraic constraints that result from conservation laws, limitation of resources, or balance conditions and thus the models are differential-algebraic equations (DAEs). In this work, we present conditions under which both these properties, the positivity as well as the algebraic constraints, are preserved in the numerical simulation by Runge-Kutta or multistep discretization methods. Using a decomposition approach, we separate the dynamic and the algebraic equations of a given linear, positive DAE to give positivity preserving conditions for each part separately. For the dynamic part, we generalize the results for positive ODEs to DAEs using the solution representation via Drazin inverses. For the algebraic part, we use the consistency conditions of the discretization method to derive conditions under which this part of the approximation overestimates the exact solution and thus is non-negative. We test these conditions for some common Runge-Kutta and multistep methods and observe that none of these methods is suitable to solve positive higher index DAEs in a proper way. 2011 Mathematics Subject Classification: 65L80, 65L06, 15A16, 15B48

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Numerical Algorithm For Solving Linear Differential Equations of Arbitrary Order And Coefficients

Referring to one of the recent works of the authors, presented in~cite{differentialbpf}, for numerical solution of linear differential equations, an alternative scheme is proposed in this article to considerably improve the accuracy and efficiency. For this purpose, triangular functions as a set of orthogonal functions are used. By using a special representation of the vector forms of triangula...

متن کامل

NUMERICAL SOLUTION OF INTEGRO-DIFFERENTIAL EQUATION BY USING CHEBYSHEV WAVELET OPERATIONAL MATRIX OF INTEGRATION

In this paper, we propose a method to approximate the solution of a linear Fredholm integro-differential equation by using the Chebyshev wavelet of the first kind as basis. For this purpose, we introduce the first Chebyshev operational matrix of integration. Chebyshev wavelet approximating method is then utilized to reduce the integro-differential equation to a system of algebraic equations. Il...

متن کامل

Numerical method for solving optimal control problem of the linear differential systems with inequality constraints

In this paper, an efficient method for solving optimal control problems of the linear differential systems with inequality constraint is proposed. By using new adjustment of hat basis functions and their operational matrices of integration, optimal control problem is reduced to an optimization problem. Also, the error analysis of the proposed method is nvestigated and it is proved that the orde...

متن کامل

Jacobi Operational Matrix Approach for Solving Systems of Linear and Nonlinear Integro-Differential Equations

‎‎‎‎‎‎‎‎‎‎‎‎‎This paper aims to construct a general formulation for the shifted Jacobi operational matrices of integration and product‎. ‎The main aim is to generalize the Jacobi integral and product operational matrices to the solving system of Fredholm and Volterra integro--differential equations‎ which appear in various fields of science such as physics and engineering. ‎The Operational matr...

متن کامل

Numerical solution of Fredholm integral-differential equations on unbounded domain

In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerische Mathematik

دوره 124  شماره 

صفحات  -

تاریخ انتشار 2013